1480

Comparative cancer cell panel profiling of kinase inhibitors approved for clinical use from 2018 to 2020

Jeffrey J. Kooijman¹, Wilhelmina E. van Riel¹, Martine B.W. Prinsen¹, Jelle Dylus¹, Jeroen A.D.M. de Roos¹, Yugo Narumi², Yusuke Kawase², Rogier C. Buijsman¹, Suzanne J.C. van Gerwen¹, Guido J.R. Zaman¹. ¹Netherlands Translational Research Center B.V. (NTRC), Kloosterstraat 9, 5349 AB Oss, The Netherlands | ²Carna Biosciences Inc., 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi, Kobe, Japan | T: +31 412 700 500 E: info@ntrc.nl W: www.oncolines.com

Introduction

- In earlier work, we have profiled all kinase inhibitors approved by the FDA until 2018 on a panel of either 44, 66, or 102 cell lines [1,2].
- Between 2018 and 2020, 20 novel kinase inhibitors have been approved by the FDA for oncology indications.
- To follow up on the previous studies, we profiled the 20 newly-approved inhibitors and 19 previously approved or clinical stage drugs acting on the same targets on panels of 255 kinases and 134 cell lines.

Methods

- Compounds were profiled on a panel of 255 wild-type kinases in mobility shift assays (MSA) at a concentration of 1 µmol/L and an ATP concentration within 2-fold of the affinity (KM, ATP) of the individual kinase (K_{M,bin}). Dose-response curves were generated in MSA to determine IC₅₀ values for primary and secondary targets [3].
- Cell proliferation assays were performed using ATPlite[™] as readout after 72 hours incubation with compound. Inhibitors were profiled in duplicate 9-point dose-response curves on all cell lines [1].
- Cell line genetic data were retrieved from the COSMIC, CCLE or DepMap databases and related to drug response [4,5].

Generic Name	Trade Name	Clinical Use	IC50 (nM) on primary and secondary targets						First approval
dacomitinib	Vizimpro	EGFR L858R or exon 19 mutant non-small cell lung cancer	EGFR	0.27	[L858R]	0.29	[T790M]	9.9	September 2018
gefitinib	lressa	EGFR L858R or exon 19 mutant non-small cell lung cancer	EGFR	0.41	[L858R]	0.43	[T790M]	154	May 2003
osimertinib	Tagrisso	EGFR L858R, exon 19 or T790M mutant non-small cell lung cancer	EGFR	25	[L858R]	2.5	[T790M]	6.1	November 2015
erdafitinib	Balversa	FGFR2 or FGFR3 altered urothelial carcinoma	FGFR3	0.34	FGFR2	0.46	FGFR1	0.49	April 2019
infigratinib			FGFR2	0.45	FGFR1	0.54	FGFR3	0.61	Phase 3
pemigatinib	Pemazyre	FGFR2-positive cholangiocarcinoma	FGFR2	0.42	FGFR1	0.62	FGFR3	0.92	April 2020
entrectinib	Rozlytrek	NTRK-positive solid tumors and ROS1-positive NSCLC	TRKA	0.52	TRKB	0.67	TRKC	0.71	August 2019
larotrectinib	Vitrakvi	NTRK-positive solid tumors	TRKA	0.91	TRKB	1.4	TRKC	1.4	November 2018
lorlatinib	Lorbrena	ALK-positive non-small cell lung cancer	ALK	0.54	ROS	0.16	LTK	0.38	November 2018
zanubrutinib	Brukinsa	mantle cell lymphoma	BTK	0.86	[C481S]	103	TEC	1.8	November 2019
encorafenib	Braftovi	BRAF V600E or V600K mutant melanoma or colorectal cancer	[V600E]	3.1	BRAF	7.7	RAF1	1.5	June 2018
gilteritinib	Xospata	FLT3 mutant acute myeloid leukemia	FLT3	0.40	ALK	0.74	AXL	1.2	November 2018
quizartinib	Vanflyta	FLT3 mutant acute myeloid leukemia	FLT3	17	PDGFRa	30	PDGFRβ	231	June 2019 (Japan)
pexidartinib	Turalio	tenosynovial giant cell tumor	FMS	125	KIT	132	FLT3	737	August 2019
tucatinib	Tukysa	HER2-positive breast cancer	HER2	3.3	EGFR	6.7	HER4	95	April 2020
ripretinib	Qinlock	gastrointestinal stromal tumor	PDGFRα	5.4	PDGFRβ	8.1	KIT	20	May 2020
binimetinib	Mektovi	BRAF V600E or V600K mutant melanoma	MEK1	503	MEK2	>1000			June 2018
selumetinib	Koselugo	neurofibromatosis	MEK1	14 ^a	MEK2	14 ^a			April 2020
capmatinib	Tabrecta	MET mutant non-small cell lung cancer	MET	2.1					May 2020
avapritinib	Ayvakit	PDGFRA mutant gastrointestinal stromal tumor	PDGFRα	0.27	PDGFRβ	0.31	KIT	12	January 2020
pralsetinib	Gavreto	RET-positive non-small cell lung cancer	RET	0.83	FGFR2	27	FGFR3	50	September 2020
selpercatinib	Retevmo	RET-positive non-small cell lung cancer or thyroid cancer	RET	0.45	FGFR2	16	FGFR3	50	May 2020
alpelisib	Piqray	PIK3CA mutant, HR-positive, HER2-negative breast cancer	PIK3Cα ^b	1.4	PIK3Cγ ^b	9.8	ΡΙΚ3Cδ ^b	10	May 2019
duvelisib	Copiktra	various lymphoma indications	ΡΙΚ3Cδ ^b	0.023	PIK3Cγ ^b	0.44	PIK3Ca ^b	32	September 2018

Table 1 Kinase inhibitors approved by the FDA for oncology indications since 2018 and selected previously approved or clinical stage inhibitors acting on the same targets.

^aData from [6]; ^bK_D (nM) as determined by surface plasmon resonance [7]

References: [1] Uitdehaag et al. (2014) PLOS ONE. e92146. [2] Uitdehaag et al. (2019) Mol Cancer Ther. 18: 470-481. [3] Kitagawa et al. (2013) Genes Cells. 18: 110-122. [4] Iorio et al. (2016) Cell. 166: 740-754. [5] Ghandi et al. (2019) Nature. 569: 503-508. [6] Yeh et al. (2007) Clin Cancer Res. 13: 1576-1583. [7] Willemsen-Seegers et al. (2017) J Mol Biol. 429: 574-586. [8] Metz et al. (2018) Cell Syst. 7: 347-350.

gilteritinib

- cellular profiling for expansion of drug indications.