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Figure 7: Validation of the synergy prediction algorithm. A: ROC with 
100-fold cross validation of the O’Neil et al. (2016) data set [5]. B: As A but 
on the NTRC data set [3]. C: Validation statistics including DREAM set [6].
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Figure 4: Results of a full SynergyScreenTM performed at NTRC.
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Rank Name Target Rank Name Target

1 2-D08 SUMO 11 vorinostat HDAC

2 BAY11-7085 NFKB 12 panobinostat HDAC

3 NVP-ADW742 IGF1R / ALK 13 entinostat HDAC

4 MLN-7243 UAE 14 navitoclax Bcl2

5 BLU-9931 FGFR4 15 ABT-737 Bcl2

6 TH588 MTH 16 EPZ-005687 EZH2

7 brivanib multikinase 17 S-trityl-cysteine chemotherapy

8 tozasertib Aurora kinases 18 busulfan alkylating

9 danusertib Aurora kinases 19 LGK974 Wnt-pathway

10 cytarabine anti-metabolite 20 mercaptopurine anti-metabolite
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Figure 8: The top 20 synergies for niraparib from the synergy prediction algorithm. 
Experimentally validated compounds (white) or clusters (green fill) are indicated.
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Figure 2: Cluster dendrogram of the response of more than 150 anticancer agents in the 
OncolinesTM panel. Red dots indicate compounds selected for the diversity-based library.

Introduction
• Combination of anticancer drugs is essential to improve response rates 

and combat the emergence of drug resistance.
• The discovery of new drug combinations is constrained by the cost and 

effort of large unbiased screens.
• Knowledge of biological mechanisms can be used to more efficiently 

screen for clinically relevant synergies.
• We developed a diversity-based library of anticancer drugs, after 

clustering of cell line profiles, to enhance the efficiency of screening.
• In parallel, an in silico application was generated that applies clinically 

validated synthetic lethal data to predict synergistic pairs.

Methods
• Antiproliferative IC50s were determined for more than 150 anti-cancer 

agents in the OncolinesTM panel of 102 cell lines [1] (Figure 1). 
• IC50 data were clustered and 43 exemplars were selected by affinity 

propagation clustering in R, to yield the diversity-based library (Figure 2). 
• Results were compared to a large SynergyScreenTM study, where we tested 

the ability of niraparib to shift dose-response curves of a library of 150 
anti-cancer agents [2, 3] (Figures 3-5).

• In parallel, software was developed to predict synergistic interactions. This 
combines experimental cell line profiling data with basal gene expression 
and synthetic lethal data [4]. This was applied to niraparib (Figures 6-8).
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Conclusion
• The efficiency of screening for synergistic interactions of 

anti-cancer therapy can be improved by applying biological 
information such as response clustering and synthetic lethality.

• A two-stage screen with a diversity-based compound library can 
identify most synergistic interactions with far fewer experiments.

• NTRC has developed powerful software that combines single 
agent profiling with synthetic lethal interactions to prioritize 
compounds for synergy testing.

• Diversity-based library testing and in silico prioritization have 
been added to our SynergyScreenTM platform for identification of 
synergistic interactions. 

Figure 1: Overview of 102 parallel proliferation assays to profile the drug response of cytarabine.

Figure 6: Workflow of the synergy prediction algorithm.

In silico synergy prediction
• We developed an algorithm to predict synergistic 

partners without a priori information on mechanism 
or chemical structure.

• Drug response on 102 cell lines is correlated to basal 
gene expression profiles of cell lines.

• Highly correlated genes are matched to clinically 
validated synthetic lethal genes [4].

• The synthetic lethal profile is translated to a list of 
putative synergistic partners (Figure 6).

• Results were validated on several large 
combinatorial screens [3, 5-6] (Figure 7).

Diversity-based library for synergy screening

Figure 3: Comparison of two synergy 
screening workflows. 
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Assumption:  
Drugs that inhibit pathways that are synthetic lethal,  
work synergistically.

Approach:  
Correlate OncolinesTM IC50s with cell line gene expression status 
and match top genes to synthetic lethal partners. 

Data set No. combis Usable AUC in ROC
DREAM 583 31 0.67
O’Neil 535 155 0.64
NTRC 601 601 0.63

NTRC signal transduction 15 15 0.93

Figure 4. A-B: The synergy prediction algorithm based on synthetic lethality [4]. C-D: ROC with 100-
fold cross validation of the O’Neil [6] and internal NTRC data set [7]. E: Validation statistics including 
DREAM set [8]. F: Predictions based on the niraparib OncolinesTM profile (66 cell lines).
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2 ABT-737 -0.68 BCL2 2. synthetic lethal
3 Nutlin 3-a -0.63 MDM2 1. targeted
4 navitoclax -0.57 BCL2 2. synthetic lethal
5 irinotecan -0.54 topoisomerase I 1. targeted
6 mitoxantrone -0.51 topoisomerase II 1. targeted
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8 doxorubicin -0.46 topoisomerase II 1. targeted
9 carboplatin -0.42 DNA damage 1. targeted 

10 all-trans  
retinoic acid -0.38 RAR -

11 epirubicin -0.38 topoisomerase II 1. targeted

12 cisplatin -0.37 DNA damage 1. targeted
13 GSK-1070916 -0.35 Aurora kinase (2. synthetic lethal)
14 topotecan -0.34 topoisomerase I 1. targeted
15 2D-08 efficacy SUMO-ylation 2. synthetic lethal
16 temozolomide efficacy alkylating agent (2. synthetic lethal)
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in multiple ratios. C: Overview of workflow with a (not used) diversity-based alternative. D: Results 
compared to the predictions from models 1-3. Bracketing means only compound class was predicted.

Assumption:  
Drugs with minimally overlapping resistance mechanisms 
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Figure 7: Validation of the synergy prediction algorithm. A: ROC with 
100-fold cross validation of the O’Neil et al. (2016) data set [5]. B: As A but 
on the NTRC data set [3]. C: Validation statistics including DREAM set [6].
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4 MLN-7243 UAE 14 navitoclax Bcl2

5 BLU-9931 FGFR4 15 ABT-737 Bcl2

6 TH588 MTH 16 EPZ-005687 EZH2

7 brivanib multikinase 17 S-trityl-cysteine chemotherapy
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Figure 8: The top 20 synergies for niraparib from the synergy prediction algorithm. 
Experimentally validated compounds (white) or clusters (green fill) are indicated.
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Figure 2: Cluster dendrogram of the response of more than 150 anticancer agents in the 
OncolinesTM panel. Red dots indicate compounds selected for the diversity-based library.

Introduction
• Combination of anticancer drugs is essential to improve response rates 

and combat the emergence of drug resistance.
• The discovery of new drug combinations is constrained by the cost and 

effort of large unbiased screens.
• Knowledge of biological mechanisms can be used to more efficiently 

screen for clinically relevant synergies.
• We developed a diversity-based library of anticancer drugs, after 

clustering of cell line profiles, to enhance the efficiency of screening.
• In parallel, an in silico application was generated that applies clinically 

validated synthetic lethal data to predict synergistic pairs.

Methods
• Antiproliferative IC50s were determined for more than 150 anti-cancer 

agents in the OncolinesTM panel of 102 cell lines [1] (Figure 1). 
• IC50 data were clustered and 43 exemplars were selected by affinity 

propagation clustering in R, to yield the diversity-based library (Figure 2). 
• Results were compared to a large SynergyScreenTM study, where we tested 

the ability of niraparib to shift dose-response curves of a library of 150 
anti-cancer agents [2, 3] (Figures 3-5).

• In parallel, software was developed to predict synergistic interactions. This 
combines experimental cell line profiling data with basal gene expression 
and synthetic lethal data [4]. This was applied to niraparib (Figures 6-8).
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Conclusion
• The efficiency of screening for synergistic interactions of 

anti-cancer therapy can be improved by applying biological 
information such as response clustering and synthetic lethality.

• A two-stage screen with a diversity-based compound library can 
identify most synergistic interactions with far fewer experiments.

• NTRC has developed powerful software that combines single 
agent profiling with synthetic lethal interactions to prioritize 
compounds for synergy testing.

• Diversity-based library testing and in silico prioritization have 
been added to our SynergyScreenTM platform for identification of 
synergistic interactions. 

Figure 1: Overview of 102 parallel proliferation assays to profile the drug response of cytarabine.

Figure 6: Workflow of the synergy prediction algorithm.

In silico synergy prediction
• We developed an algorithm to predict synergistic 

partners without a priori information on mechanism 
or chemical structure.

• Drug response on 102 cell lines is correlated to basal 
gene expression profiles of cell lines.

• Highly correlated genes are matched to clinically 
validated synthetic lethal genes [4].

• The synthetic lethal profile is translated to a list of 
putative synergistic partners (Figure 6).

• Results were validated on several large 
combinatorial screens [3, 5-6] (Figure 7).

Diversity-based library for synergy screening

Figure 3: Comparison of two synergy 
screening workflows. 
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Figure 2: Cluster dendrogram of the response of more than 150 anticancer agents in the OncolinesTM 
cancer cell line panel. 

Introduction 

• Combination of anticancer drugs is essential to improve response rates 
and prevent the emergence of drug resistance.

• The efficiency of combination screening can be improved by 
incorporating knowledge of a compound’s biological mechanism [1-4].

• We constructed three models to predict synergy based on the profiling of 
single agents in a cancer cell line panel.

• The model predictions for niraparib are compared to the outcome of a 
large and unbiased combination screen.

Experimental approach 

• OncolinesTM is a panel of 102 cell lines in which antiproliferative IC50s are 
determined in parallel in 9-point duplicate dose response curves (Figure 1).

• We have profiled more than 150 anti-cancer agents, including FDA-
approved drugs, in the OncolinesTM panel (Figure 2). [1]

• Gene expression and mutation data for all cell lines were downloaded 
from the Depmap and CCLE databases. [1]

• Based on analysis of cancer drivers (Figure 3), synthetic lethal interactions 
(Figure 4) and resistance mechanisms (Figure 5), we constructed three 
models that predicted synergistic partners of niraparib. [2-5]

• Results were compared to a large SynergyScreenTM study, where we 
investigated the ability of niraparib to shift the dose-response curves of 
150 different anti-cancer agents (Figure 6).
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Conclusion 

• NTRC has developed three models to predict synergy based on a single 
agent’s response in OncolinesTM.

• The minimal cross resistance model suggests combination of niraparib 
with EGFR or PI3K/mTOR inhibitors. However, this cannot be validated on 
a single cell line.

• Models 1 and 3 predicted 12 out of 16 validated synergistic partners for 
niraparib, with the targeted synergy model being most successful.

• A priori selection of compounds can help in reducing size and cost of 
synergy screening experiments, but not replace them.

Figure 1: Waterfall plot of 102 parallel proliferation assays to profile the drug response of niraparib. 
High or low PARP1 expression status is based on one standard deviation above or below CCLE average.

OncolinesTM drug response library

Figure 3. A-C: Dabrafenib and trametinib both target B-RAF mutant cancer and work synergistically. 
D: Predicting the O’Neil [6] synergy data set with model 1. E: Candidates for the niraparib case study.

Figure 5. A: Principle of the method. B: Pearson correlation between mRNA expression of drug 
resistance genes and the 10log(IC50) for niraparib in the OncolinesTM panel. High correlations indicate 
involvement in resistance. C:  Scores of niraparib compared to other compounds for two genes. D: 
Compounds with lowest scores per gene: erlotinib and apitolisib are the best synergy candidates.
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